English (United Kingdom)French (Fr)Russian (CIS)Espa
Home Library Tutorials Neurohacking Tutorial 7 - Imagination & Related Abilities
Neurohacking Tutorial 7 - Imagination & Related Abilities PDF Печать E-mail
Рейтинг пользователей: / 87
ХудшийЛучший 
??????????? - Tutorials
Автор: NHA   
13.10.2011 19:35
Индекс материала
Neurohacking Tutorial 7 - Imagination & Related Abilities
Network 3 & Mirror Neurons
Perception From the Bottom Up
What Happens if Things Go Wrong
The Mind's Inner Model
NHA Guide to Methods & Technology
The Most Important Bits to Remember
Hacks & Exercices
Notes, References & Answers
Все страницы
There are no translations available.

 

 

Neurohacking Tutorial 7

Imagination & Related Abilities

(Updated: Oct 2011)

 

In these next few tutorials we explore network 3, and we look more closely at how imagination is the basis for perception, empathy, learning, memory and prediction. Far from being the seat of a vague wooly fantasy world, imagination is our main link with reality and the central hub of our intelligence. We'll show you how basic rules of association lead to the emergence of a complex inner model that the mind uses to process everything, how network 3's physiology and mirror neurons allow us to connect the map to the territory, and what hacks and exercises can improve your imagination, perception and learning.

 


Follow the Right Habit

 

If you have practiced well, this tutorial marks your transition from 'basics' in NH to 'intermediate' level. Hopefully you have made a habit of doing things in the right order, and in order to make the best use of this next set of tutorials, you should continue to monitor and control your anxiety levels and use input control diligently to maintain conditions in the green zone for growth & development.

In NH we often look at things on different ‘levels’; concrete (material; physical), abstract (mental; non-physical), and behavioral being the most common -for example we can view any experience according to what networks or functions were involved (concrete anatomy & physiology), what neurotransmitters it produced (concrete neurochemical), what behavior it prompted (concrete behavioral), or how somebody felt about it (abstract emotional). In these next tutorials you should start to recognize where we do this and how these various approches fit together to give you an overall picture of the amazing organisms that we are.

In Tutorial 6 we learned some important pieces of information that will help you to understand the information about imagination and memory.

Firstly about perception:

Concepts are 'bits' of meaning that are already in our memory database in graphic format, whether they were hard wired or have been acquired via experience.

Percepts are 'bits' of information derived from incoming data and translated into graphic format for comparison with database contents for interpretation, categorization and recognition.

Perception relies on the incoming new percepts having enough points of similarity to our known concepts to be associated, categorized and given meaning by imagination.

 

Secondly about learning:

Natural learning is moving from the known into the unknown and safely back again; a process of stretch-relaxation. Learning anything new depends on the unknown thing having enough points of similarity to make sense when compared against what we already know.

If you put this together with the process of perception described above, you will realise that all perception is learning, in a small way. With every bit of input our minds are learning about what has changed, what is changing and what has remained the same in the world around us.

And thirdly a piece of information that is vital in understanding intelligence:

The brain uses the same networks for both abstract and concrete skills. If you put this together with the first two pieces of information you will realise that perception is using the same process as learning, and you may even guess that they share the same network, but would you guess that they rely on the same function -imagination?

That's what this tutorials is going to explore. If you get stuck in the science bits of these next few tutorials, come back to this white rabbit and go over these three connected concepts. They should help you understand the common basics beneath the mind's diverse abilities.

From now on it's more important that you start to understand the links, connections and relationships between things, as well as the basic details about things themselves. Understanding how the machinery of the brain relates to the products and processes of the mind will help you to see the ground rules behind them that in turn lead to our abilities, our behavioral and mental skills; the factors of intelligence.

The mind's processes make a lot more sense when viewed from the bottom up. We can see the more simple underlying themes behind all the complex details. We don't by any means have to know all the details to grasp these ideas, which is a good thing because the mind is a complex, non-linear, dynamic, open chaotic system and knowing ALL the details would be a bit like trying to understand all the details of the weather everywhere in the world at every moment in time!

When we understand the basics, and we have a coherent model for those basics, we can then apply our model to all sorts of situations (like we do to forecast the weather) and gain some understanding of the relationships between things and how the system works.

We don't just mean that you should understand the relationships between networks, by the way, although that's important too. We mean the relationships between reality, the body/brain, the mind, the inner model, imagination, memory and perception. It is in these relationships; in the interactions between things, rather than in the things themselves, that intelligence can be seen to emerge, and these interrelationships are also prime targets in NH.

Understanding the processes of mind (rather than just the brain) is all about knowing these associations and interactions.

Each step of mental processing depends on its own contextual variables; that is why we are all so different. We also have very different levels of processing ability and mental tools in different networks. But reality's ground rules hold for every form of intelligent life and that is why we are all so similar in other ways. We all start off in the womb forming 6 potentially perfect networks, but contextual factors in the real world affect whether they will wither or flourish, develop or regress, right from the start and at every stage along the way.

 

Maps and models

You'll be using your mind to understand and make sense of the mind, of course; an interesting and complex project for it, but not so interesting or so complex as your mind's everyday task of understanding and making sense of the whole of reality, all of its waking time.

Forming an image of what is going on 'out there' happens in a mature brain completely unconsciously in a fraction of a second. We take for granted the results of the seriously complex process of perception, and the mind approaches it in a practical way much as any intelligent being does -by making a model of reality, testing that model against reality, looking at the feedback and fine-tuning it for accuracy, prediction and control.

This is exactly the same process we use as intelligent beings when using a mathematical format to construct the standard model of cosmology, for example. That's how science works. You make a model of what you think is going on, you test it against the real life evidence and you find how accurate it is. If it's good, your predictions based on it will pan out, if it's not good enough, some of it won't fit the facts and you have to fine tune it, getting ever closer to reality itself.

On the human behavioral level, we make models of reality all the time; mathematics is a tool that is useful in making such models and so are computer graphics. It's very surprising that most biopsychology researchers (and AI researchers) haven't figured out that the mind does this too -uses an inner model as a user-interface for computations about reality- because this is the core of all perception and all processing behind learning, memory and interaction.

The mind's model is largely unconscious; that is to say we are not aware of it ordinarily because it's automatic. It uses a graphic format and employs the brain's visual cortex along with mirror neurons to scan what's in “the mind's eye”; and this is a key subprocess of imagination.

We'll be exploring this model during the next few tutorials because it is housed in network 3 and the mind relies on it for all sorts of functions.

 

For You and Against You: Fact versus Fiction

 

Only very recently (2008-2011) have we become able by virtue of developments in technology to scientifically explore imagination as a process and really see what it does. If you can bear that in mind, we'll take a look at the new research and reexamine imagination from the bottom up; you’ll find that this function is not at all what most of us have previously been led to believe. Be prepared for a few surprises!

For You

On your side in understanding imagination is everything you know about reality that is provably true, and your ability to keep an open mind and avoid value judgments unless they are backed by evidence or can be tested.

One side effect of having so much discovery in a field that was previously very slow is that neuroscience is going through a paradigm shift. A lot of what we thought the brain and mind were doing has turned out to be wrong. That means we need to approach these subjects afresh with an open mind and remember that what we have always been taught was true might not be. That shouldn’t be a problem for seasoned neurohackers like yourselves : )

So we have to bust another myth here by explaining that imagination is NOT about fantasy in the same way that nuts and bolts are not about jewellery (although they CAN be used for that). It will help to approach the subject as though you knew nothing, think objectively not subjectively, and try to avoid associating imagination with make-believe at all, while we discuss its main functions.

Let’s start from the “old paradigm” (current public) common definition of “imagination” that you'll still find in dictionaries:

 

“The ability to form mental images or concepts not present to the senses”

 

This has turned out to be almost completely wrong. It's only even slightly right because it states one thing that imagination can do, but in the past researchers mistakenly concluded that this was the ONLY thing it could do.

This wasn't entirely their fault. A morbid fear of fantasy and magical thinking was -and still is- epidemic among front loaders with poor connections between N3/N4; notably Piaget, a mainstream success of his time in developmental psychology, and a whole bunch of other influential scientists whom we won't further distress by naming them. Fear of “magical thinking” is a phobia that particularly freaks frontloaders out, because it triggers panic and violent irrational behavior, and feeling out of control raises anxiety even more.

Because such thinking was known to involve imagination (inevitably, due to the fact that most thinking of all kinds involves the imagination), out went the baby with the bathwater and for a long time researchers steered clear of imagination research if they wanted funding and to keep their teeth, and only recently has it become safer to go there without risking derision covering thinly veiled panic. In the meantime, tech has improved a lot. Consequently a number of recent studies show that imagination is a highly flexible process underlying many functions central to processing. Imagining the future, or a fictional scenario, or what someone else is feeling, depends on much of the same neural architecture and processing that is needed for remembering the past and perceiving and understanding the here and now.

Further exploration has led to the understanding that THE central process at work behind many main factors of intelligence like perception, memory, empathy, decision making, planning, creativity and even intellect and strategy, is imagination, right from the level of initial processing.

Imagination uses stored information (memories) and current input to interpret (perceive) our reality in the here and now, and to predict & direct possible future courses of events. If you want to know how it does all that, just keep reading. 

Against You

There is snapback danger here. Working against you in understanding this will be anything that stereotypes ‘imagination’ as 'fantasy' or “not real” because this is based on the old outdated, limited and false idea of what imagination is and what it can do. How much of this bias you have will depend on the validity of associations in your own memory databases, so the habits we may have to change here are old assumptions or beliefs (especially “what other people think”) about what imagination really is, and if you're a frontloader with a morbid fear of poetry or 'magical thinking' this could be difficult for you and you may have to use anxiety reduction before proceeding. Fear of woo woo can cause us to perceive facts as woo woo where there is actually no woo woo, so watch out for anxiety's dirty tricks and if in doubt, think like Mr Spock.

When someone says “It’s all in your memory”, we imagine the “it” as being some data stored in some actual physical location. Some people may imagine a corresponding brain part, others may think of a network, or maybe a distributed load of blobs here and there around the brain.

But when someone says “it’s all in your imagination” we don’t normally imagine a corresponding brain part; instead we interpret the phrase as meaning “you made it up”, “you are delusional” or “it’s not real”.

This paradigm has to go, because it's nonsense. Imagination is a process, and we are looking here at the process of imagination; not the contents (indeed, there are no 'contents', as you will see). We'll be examining the physiological brain parts involved in the process of imagination here, and they are certainly as solid and real as those dealing with memory, empathy and prediction; in fact they are the same ones. Together, these functions make perception and learning possible.

 

 



Обновлено 29.05.2017 13:14